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Large-q series expansion for the ground-state degeneracy of theq-state Potts antiferromagnet on
the „3–122

… lattice

Shan-Ho Tsai*
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840

~Received 24 October 1997!

We calculate the large-q series expansion for the ground-state degeneracy~5 exponent of the ground-state
entropy! per site of theq-state Potts antiferromagnet on the (3•122) lattice, to orderO(y19), wherey51/(q
21). We note a remarkable agreement, toO(y18), between this series and a rigorous lower bound derived
recently.@S1063-651X~98!09803-1#

PACS number~s!: 64.60.Cn, 75.10.Hk, 05.20.2y
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I. INTRODUCTION

Nonzero ground-state disorder and associated entr
S0Þ0, is an important subject in statistical mechanics. O
physical example is provided by ice, for which the residu
molar entropy isS050.8260.05 cal/~K mole!, i.e., S0 /R
50.4160.03, whereR5NAvogkB @1,2#. A particularly simple
model exhibiting ground-state entropy without the complic
tion of frustration is theq-state Potts antiferromagnet~AF!
@3,4# on a latticeL, for q>x(L), wherex(L) denotes the
minimum number of colors necessary to color the vertices
the lattice such that no two adjacent vertices have the s
color. This model has a deep connection with graph theor
mathematics, since the zero-temperature partition functio
the above-mentionedq-state Potts antiferromagnet on a la
tice L satisfiesZ(L,q,T50)PAF5P(L,q), where P(G,q)
is the chromatic polynomial@5# expressing the number o
ways of coloring the vertices of a graphG with q colors such
that no two adjacent vertices~connected by a bond of th
graph! have the same color. Hence, the ground-state entr
per site is given byS0 /kB5 lnW(L,q), whereW(L,q), the
ground-state degeneracy per site, is

W~L,q!5 lim
n→`

P~Ln ,q!1/n. ~1.1!

Here,Ln denotes ann-vertex lattice of typeL with appro-
priate~e.g., free! boundary conditions. Since nontrivial exa
solutions for this function are known in only a very fe
cases~square lattice forq53 @6#, triangular lattice@7#, and
kagomélattice for q53 @8,4#!, it is important to exploit and
extend general approximate methods that can be applie
all cases. Such methods include rigorous upper and lo
bounds, large-q series expansions, and Monte Carlo me
surements. Recently, with R. Shrock, the present author s
ied the ground-state entropy in antiferromagnetic Potts m
els on various lattices and obtained further results with th
three methods@9–11#. We derived a general lower bound o
W(L,q) @11# which applies to all Archimedean lattices an
coincides to many orders with large-q series expansion o
this function. Previous large-q series expansions includ
works by Baker@12#, Nagle @13,14#, Kim and Enting@15#,
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Bakaev and co-workers@16#, and work reported in@10,11#.
Related work on series expansions for the ground-state
generacy of ice was done by Nagle@17#.

Large-q series expansions of the respectiveW(L,q) func-
tions on various Archimedean lattices were computed in R
@11#. In particular,W(L,q) for L5(3•122) was computed
to O(y13) @11#. In the present paper we extend this series
higher order, namely, toO(y19). Our main motivation is to
check the accuracy of the lower bound onW„(3•122),q…

given in@11#. It is interesting that this lower bound coincide
with the first 19 terms, i.e., toO(y18), in the large-q series.
We choose the latticeL5(3•122) as an illustrative example
of a heteropolygonal Archimedean lattice. The reader is
ferred to Refs.@9–11# for further background and reference

II. LARGE- q SERIES EXPANSION

Before proceeding, we recall that an Archimedean latt
is defined as a uniform tiling of the plane by regular po
gons in which all vertices are equivalent@18#. Such a lattice
is specified by the ordered sequence of polygons that
traverses in making a complete circuit around a vertex i
given ~say counterclockwise! direction. This is incorporated
in the mathematical notation for an Archimedean latticeL:

L5S)
i

pi
ai D , ~2.1!

where in the above circuit, the notationpi
ai indicates that the

regular polygonpi occurs contiguouslyai times; it can also
occur noncontiguously. We shall denoteai ,s as the sum of
the ai ’s over all of the occurrences of the givenpi in the
product. Because the starting point is irrelevant, the sym
is invariant under cyclic permutations. The number of po
gons of typepi per site is given by

npi
5

ai ,s

pi
. ~2.2!

The coordination number for an Archimedean lattice isD
5( iai ,s . In particular, for the (3•122) lattice considered in
this paper, the number of triangles per site isp351/3, the
number of 12-gons per site isp1251/6, and the coordination
number isD53. A section of this lattice is shown in Fig. 1
2686 © 1998 The American Physical Society
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A general upper bound on a chromatic polynomial for
n-vertex graphG is P(G,q)<qn. This yields the corre-
sponding upper boundW($G%,q),q. Hence, as in our pre
vious work@9–11#, it is natural to define a reduced functio
that has a finite limit asq→`,

Wr~$G%,q!5q21W~$G%,q!. ~2.3!

When calculating large-q Taylor series expansions forW
functions on regular lattices, it is most convenient to ca
this out for the related function

W̄~L,y!5
W~L,q!

q~12q21!D/2
, ~2.4!

for which the large-q series can be written in the form

W̄~L,y!511 (
m51

`

wL,mym ~2.5!

with

y5
1

q21
. ~2.6!

Our calculations of large-q series expansion use th
method of Ref.@14#. The chromatic polynomial is written a
the sum

P~G,q!5
~q21!E

q~E2n! (
Ga<G

~21!e
q~e2v !

~q21!e
m~Ga ,q!,

~2.7!

whereE is the total number of edges of then-vertex graph
G, m(Ga ,q) are weights@19# of weak subgraphsGa of G,
ande andv are the numbers of edges and vertices, resp
tively, of Ga . The summation is over all weak subgrap
Ga . The weight functionm(Ga ,q) vanishes ifGa has any
vertices of degree one or ifGa has a bridge. Another prop
erty is thatm(Ga ,q) does not change under the insertion
deletion of vertices of degree two inGa . Thus in the sum-
mation of weak subgraphs, one effectively has to cons
~connected and disconnected! subgraphs with no vertices o
degree one and without bridges. One also has to cons
graphs with articulation points. Weight functionsm(Ga ,q)
are independent ofG and satisfy a simple recursion relatio

FIG. 1. Section of the (3•122) Archimedean lattice.
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formula. Reference@14# gives the weights of all star graph
with cyclomatic number less or equal to four@20#.

The series expansion forW„(3•122),q… to O(y19) in-
volves star graphs with cyclomatic number up to 7. T
graphs with cyclomatic number equal to 5, 6, and 7, wh
enter in the series expansion to this order are shown in F
2~a!, 2~d!, and 2~e!, respectively. To derive the weights o
these graphs, we use theorems III and VII of Ref.@14#. Theo-
rem III states that if a graphG consists of two piecesG1 and
G2 that have just one vertex in common, its weight is giv
by

m~G,q!5
1

q
m~G1 ,q!m~G2 ,q!. ~2.8!

Theorem VII states that

m~G,q!52
1

q
m~G8,q!1m~G9,q!, ~2.9!

whereG8 is derived fromG by omitting the edge betwee
two vertices, sayi and j , andG9 is the graph with verticesi
and j identified. As an example, consider the graphsG5, G58
and G59 depicted in Figs. 2~a!, 2~b!, and 2~c!. G59 has an
articulation point and, using Eq.~2.8!, we can write its
weight asm(G59 ,q)5q21m(P,q)m(G58 ,q), where P here
stands for polygon. The weights forP and G58 are m(P,q)
5(q21) and m(G58 ,q)5(q21)(q22)3/q3 @14#. Hence,
Eq. ~2.9! yields

m~G5 ,q!52
1

q
m~G58 ,q!1m~G59 ,q!5

1

q4
~q21!~q22!4.

~2.10!

Note that vertices of degree two have been omitted in Fig
The weights of the graphs with higher cyclomatic num

bers, shown in Figs. 2~d! and 2~e!, can be similarly deter-
mined to be

FIG. 2. Illustration of star graphs with cyclomatic numberc
<7. ~a! G5 is a graph withc55, ~b! G58 is derived fromG5 by
omitting one edge between verticesi and j , and~c! G59 is the graph
with verticesi and j identified.~d! G6 is a graph withc56 and~e!
G7 hasc57. Vertices of degree 2 are not shown.
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m~G6 ,q!5
1

q5
~q21!~q22!5 ~2.11!

and

m~G7 ,q!5
1

q6
~q21!~q22!6, ~2.12!

respectively.
The subgraphs which contribute to the series toO(y12)

are ~i! graphs formed byt disconnected triangles, wheret
51,2, . . . ,6, ~ii ! polygons with 12 vertices (12-gons!, as
shown in Fig. 3~a!, ~iii ! graphs formed by a triangle con
nected to a 12-gon, as shown in Figs. 3~b! and 3~c!. Let us
refer to the edge in the overlap between a triangle an
12-gon as an internal edge. Internal edges can be part o
subgraph@as in Fig. 3~c!# or not @as in Fig. 3~b!#.

Further subgraphs which contribute toO(y13) are ~i!
graphs formed by one 12-gon and one disconnected tria
and ~ii ! graphs formed by two triangles connected to
12-gon. In the latter case, one has to consider graphs wit
internal edges@as in Fig. 3~d!#, one internal edge@as in Fig.
3~e!#, and two internal edges@as in Fig. 3~f!#. Moreover, one
has to consider all the distinguishable permutations in
positions of the two triangles. In the remaining of this pap
when we refer tot triangles connected to 12-gons, we a
including all possible distinguishable permutations of the
angles and all cases wherei internal edges belong to th
subgraph, withi 50,1, . . . ,t.

To O(y14) other subgraphs that enter in the series are~i!
graphs formed by seven disconnected triangles,~ii ! graphs
formed by three triangles connected to a 12-gon, and~iii !
graphs formed by one triangle connected to a 12-gon and
disconnected triangle.

The series toO(y15) includes~i! graphs formed by four
triangles connected to a 12-gon,~ii ! graphs formed by two
triangles connected to a 12-gon and one disconnected
angle, and~iii ! two disconnected triangles and one 12-go

To O(y16), extra subgraphs are~i! graphs comprised o
eight disconnected triangles,~ii ! graphs formed by five tri-

FIG. 3. Illustration of some graphs that enter in the largeq
series forW„(3•122),q…. Graphs~a!, ~b!, and~c! enter in series to
O(y12), while graphs~d!, ~e!, and ~f! contribute toO(y13) and
higher.
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angles connected to a 12-gon,~iii ! graphs composed of a
triangle connected to a 12-gon and two disconnected
angles, and~iv! graphs formed by three triangles connect
to a 12-gon and one disconnected triangle.

To O(y17), other subgraphs are~i! graphs formed by six
triangles connected to a 12-gon,~ii ! three disconnected tri
angles and one 12-gon,~iii ! two triangles connected to
12-gon and two disconnected triangles, and~iv! four tri-
angles connected to a 12-gon and one disconnected tria

To O(y18), further subgraphs are~i! graphs formed by
nine disconnected triangles,~ii ! graphs formed by one tri-
angle connected to a 12-gon and three disconnected
angles,~iii ! graphs comprised of three triangles connected
a 12-gon and two disconnected triangles, and~iv! graphs
formed by five triangles connected to a 12-gon and one
connected triangle.

To O(y19), new subgraphs are~i! graphs formed by four
disconnected triangles and one 12-gon,~ii ! graphs formed by
two triangles connected to a 12-gon and three disconne
triangles,~iii ! graphs formed by four triangles connected to
12-gon and two disconnected triangles,~iv! graphs formed
by six triangles connected to a 12-gon and one disconne
triangle, and~v! 20-gons.

To this order, we obtain

W̄„~3•122!,y…512
1

3
y22

1

9
y42

5

34
y62

10

35
y82

22

36
y10

1
1

6
y112

154

38
y122

1

18
y132

374

39
y14

2
1

54
y152

935

310
y162

5

486
y172

21505

313
y18

1
719

1458
y191O~y20!. ~2.13!

The lower bound of Ref.@11#, namely,

W̄„~3•122!,y…l5~12y2!1/3~11y11!1/6, ~2.14!

coincides with the first 19 terms of the series given in E
~2.13!, i.e., toO(y18). This is remarkable and shows that th
lower bound is indeed a very accurate approximation to
exact solution for theW̄ function. The lower bound first dif-
fers from the large-q expansion for the exactW̄ function at
order y19: the Taylor series expansion of this lower bou
gives 2(5/729)y19 whereas the large-q series expansion o
W̄ yields (719/1458)y19.

It is interesting to note that the lowest order iny in which
the bound~2.14! differs from the series is an order in whic
subgraphs involving two adjacent 12-gons, i.e., 20-gons,
contribute in the series expansion. If one were to calcu
the series expansion without considering the contribution
20-gons toO(y19), one would get a result that coincides wi
the coefficient of theO(y19) term in the Taylor series of the
bound~2.14!.
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III. CONCLUSIONS

We report on large-q series expansion for the ground
state degeneracy of the Potts antiferromagnet on
(3•122) lattice, to O(y19). It is remarkable that the lowe
bound derived previously coincides with the first 19 terms
the series, i.e., toO(y18). It is worthwhile to perform similar
e

f

series expansions to high orders for other types of lattice
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